Circadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.

نویسندگان

  • Gus J Menger
  • Gregg C Allen
  • Nichole Neuendorff
  • Sang-Soep Nahm
  • Terry L Thomas
  • Vincent M Cassone
  • David J Earnest
چکیده

To screen for output signals that may distinguish the pacemaker in the mammalian suprachiasmatic nucleus (SCN) from peripheral-type oscillators in which the canonical clockworks are similarly regulated in a circadian manner, the rhythmic behavior of the transcriptome in forskolin-stimulated NIH/3T3 fibroblasts was analyzed and compared relative to SCN2.2 cells in vitro and the rat SCN. Similar to the circadian profiling of the SCN2.2 and rat SCN transcriptomes, NIH/3T3 fibroblasts exhibited circadian fluctuations in the expression of the core clock genes, Per2, Cry1, and Bmal1, and 323 functionally diverse transcripts, many of which regulate cellular communication. Overlap in rhythmic transcripts among NIH/3T3 fibroblasts, SCN2.2 cells, and the rat SCN was limited to these clock genes and four other genes that mediate fatty acid and lipid metabolism or function as nuclear factors. Compared with NIH/3T3 cells, circadian gene expression in SCN oscillators was more prevalent among genes mediating glucose metabolism and neurotransmission. Coupled with evidence for the rhythmic regulation of the inducible isoform of nitric oxide synthase (iNos) in SCN2.2 cells and the rat SCN but not in fibroblasts, studies examining the effects of a NOS inhibitor on metabolic rhythms in cocultures containing SCN2.2 cells and untreated NIH/3T3 cells suggest that the gaseous neurotransmitter nitric oxide may play a key role in SCN pacemaker function. This comparative analysis of circadian gene expression in SCN and non-SCN cells may have important implications in the selective analysis of circadian signals involved in the coupling of SCN oscillators and regulation of rhythmicity in downstream cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian profiling of the transcriptome in immortalized rat SCN cells.

Endogenous oscillations in gene expression are a prevalent feature of the circadian clock in the mammalian suprachiasmatic nucleus (SCN) and similar timekeeping systems in other organisms. To determine whether immortalized cells derived from the rat SCN (SCN2.2) retain these intrinsic rhythm-generating properties, oscillatory behavior of the SCN2.2 transcriptome was analyzed and compared with t...

متن کامل

Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts.

The capacity to generate circadian rhythms endogenously and to confer this rhythmicity to other cells was compared in immortalized cells derived from the suprachiasmatic nucleus (SCN) and a fibroblast line to differentiate SCN pacemaker properties from the oscillatory behavior of non-clock tissues. Only SCN2.2 cells were capable of endogenously generating circadian rhythms in 2-deoxyglucose upt...

متن کامل

Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus.

Individual neurons within the suprachiasmatic nuclei (SCNs) are capable of functioning as autonomous clocks and generating circadian rhythms in the expression of genes that form the molecular clockworks. Limited information is available on how these molecular oscillations in individual clock cells are coordinated to provide for the ensemble rhythmicity that is normally observed from the entire ...

متن کامل

Brief Communication Circadian Regulation and Function of Voltage-Dependent Calcium Channels in the Suprachiasmatic Nucleus

Individual neurons within the suprachiasmatic nuclei (SCNs) are capable of functioning as autonomous clocks and generating circadian rhythms in the expression of genes that form the molecular clockworks. Limited information is available on how these molecular oscillations in individual clock cells are coordinated to provide for the ensemble rhythmicity that is normally observed from the entire ...

متن کامل

Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes.

The master circadian pacemaker located within the suprachiasmatic nuclei (SCN) controls neural and neuroendocrine rhythms in the mammalian brain. Astrocytes are abundant in the SCN, and this cell type displays circadian rhythms in clock gene expression and extracellular accumulation of ATP. Still, the intracellular signaling pathways that link the SCN clockworks to circadian rhythms in extracel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2007